
Page 1 of 9 
 

 

 

 

 

 

 

 

 

 

 

Market Inefficiency: 

Pairs Trading with the Kalman Filter 

Heather E. Dempsey, Sacred Heart University 

December 8th, 2017 

www.hedempsey.com 

 

 
 

 

 

 

 

 

 

 

 

http://www.hedempsey.com/


Page 2 of 9 
 

 

Abstract 

Pairs trading is a form of statistical arbitrage that seeks to profit by exploiting the mean reverting 

relationship between pairs of securities. Pairs trading came to the forefront in the mid-80s and 

over the years has achieved widespread acceptance.  As with any trading strategy, the more 

ubiquitous it becomes the less likely it is to remain profitable. The motivation for this paper is to 

explore whether there exists a niche where smaller, individual investors can profit from trading 

pairs of securities, specifically Exchange Traded Funds/Notes (ETF/ETNs) 

 

This paper examines the efficacy of 1) using a Kalman Filter (KF) algorithm to estimate the 

optimal hedge ratio for Traded Funds (ETF) and Exchange Traded; 2) use the iterative results of 

the algorithm to provide trading signals; and 3) use the trading signals to develop a pairs trading 

strategy to answer the question as to whether small, individual investors can still profit from such 

a scheme. 

 

 

 

Keywords: Pairs trading, Kalman Filter, Statistical arbitrage, Arbitrage Pricing Theory 

(APT) 

JEL codes:  C6  C15  C32  C88  G17 

 

 

 

I.  Introduction 

 

Pairs trading is a form of statistical arbitrage that seeks to profit by exploiting the mean reverting 

relationship between pairs of securities. The pairs trading strategy has been around since the 

mid-80s and over the years has achieved widespread acceptance.  As with any trading strategy, 

the more ubiquitous it becomes the less likely it is to remain profitable. The motivation for this 

paper is to explore whether smaller, individual investors1 can profit from trading pairs of 

securities such as liquid Exchange Traded Funds (ETF) and Exchange Traded Notes (ETN). 

 

This paper examines the efficacy of 1) using a Kalman Filter (KF) algorithm to estimate the 

optimal hedge ratio; 2) use the iterative results of the algorithm to provide trading signals; and 3) 

use the trading signals to develop a pairs trading strategy to answer the question as to whether 

small, individual investors can still profit from such a scheme. 

 

  

                                                             
1 Small, individual investors for purpose herein will be investors with investment portfolios less than $100,000. 
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II. Literature review  

 

There is an increasing interest in the use of the KF or state-space models, and similar 

class of algorithms, because of the highly dynamic nature of the relationship between securities. 

The KF was first designed by Rudolf Kalman (1960’s) to track a moving target. Since its 

introduction, the KF has found widespread applicability to other domains as well. For example, 

the KF is currently used in ballistic missile trajectory estimations, radar technology, global 

positioning systems (GPS), satellite tracking, robotics and econometrics. The KF is well 

equipped to handle multi-dimensions in both the state and observation matrices and is 

computationally efficient due to its recursive calculation scheme. The KF uses a set of equations 

to iteratively measure successive observations with increasing accuracy using only the previous 

estimate and current estimates of the latent variable(s) and variances. One of the benefits of its 

calculations being recursive is less memory and floating point operations are required, which 

ultimately increases speed, crucial to today’s high frequency trading (HFT) environment. The KF 

quickly “filters out the noise” (Martinelli & Rhoads, 2010) and narrows in on the true value 

under investigation (in our case the hedge-ratio) by reducing the errors in the estimate and in the 

measurement and then using the Kalman Gain (KG) to weight the errors based on their marginal 

contribution to the estimate error (Van Biezen, 2015). Generally the application of ordinary least 

squares (OLS) linear regression to this type of problem requires a larger data set usually in 

combination with a moving window. Thus, the KF is ideal for real-time applications.  

 

 Engle and Granger (1987) in their seminal work studying pairs trading used cointegration 

and vector error correction (VEC) models to examine pairs of related equities. Often, the spread 

between equities were found to depart from equilibrium temporarily. A trading strategy which 

would short the high-priced (overvalued) stock and go long on the low-priced (undervalued) 

stock until market forces pushed the pair into equilibrium or would mean-revert. Johansen and 

Juselius (1990) extended their work to include baskets of cointegrated equities in Finnish and 

Dutch market data. The estimation was conducted using vector auto regression (VAR) and used 

a maximum likelihood estimator (MLE) with a Wald test for hypotheses on alpha and beta. 

 

 Vidyamurthy (2004) describes the best way to pick the pairs of cointegrated equities. In 

his book, a variety of methods are employed, including arbitrage pricing theory (APT) and 

cointegration models. He found proof the KF is optimal when the state-space and observation 

equations are linear and the noise follows a Gaussian distribution (Vidyamurthy, 2004). The 

algorithm is linearized in most cases but there does exist several extensions of the KF. For 

example, the Extended Kalman Filter (EKF) and Unscented KF, both handle non-linearities and 

the latter, non-Gaussian distributions as well. 

 

The underlying mathematical model used in KF, is rooted in L.E. Baum’s (1972) Hidden 

Markov Model (HMM) and Baum-Welch algorithm which lay the foundation for state-transition 

and measurement equations when estimating unobservable or latent-state variables. Elliot et al. 

(2005) focused solely on the state-space models including the KF, and mean-reverting Markov 

Chain Model to “monitor spreads, profiting from investment decisions based on this spread” 
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Elliot et al. found it useful for market data—in this case dollar-neutral portfolios, hedge funds, 

and trading.  The idea is when the spread widens to a predetermined degree, to then short the 

higher-valued security, and go long on the lower-priced security. This strategy has indeed been 

profitable. However, speed is a crucial element to not only identify an adequate deviation from 

the mean, but also enter a position before equilibrium is restored and the opportunity lost.  

 

Gatev et al. (2006) used 40 years of daily US market data picked his pairs by minimizing 

the variance of two daily-price series once each was normalized. The strategy entails taking a 

long and short position when the prices between a pair deviate by more than plus or minus 2 

standard deviations in anticipation of mean-reversion (De Moura, Pizzinga, & Zubelli, 2016). 

The current study follows these specifications, except for the errors which do not exceed two 

standard deviations enough to have many trades, I restricted the limit to one standard deviation. 

 

Montana et al. (2009) explored the use of the KF in market making. 

 

III. Pair Trading Strategy Example 

Pairs trading as a strategy is straightforward. When a pair of securities is believed to have 

a mean reverting relationship that is subject to temporary deviations. It is at these times of 

sufficient deviations the trading signals are generated. Sufficient deviation in this study is 

defined by 1 to 2 ± sd. Refer to Figure 1. 

 

Figure 1. Cointegrated pair of securities. Morgan Stanley (MS) and Freeport-McMoRan, Inc (FCX) 

 

The pair illustrated in Figure 1. is an example of an cointegrated relationship between 

securities. Shown are two observed price series which tend to move together around a shared 

mean. The exception, and arbitrage opportunity, lie in the periods where the series depart from 

this equilibrium. Cointegrated relationships are characterized by mean-reverting behavior. This 
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means the pair will return to equilibrium no matter how far they stray. With this knowledge, the 

individual investor can profit. By entering a long position on the underperforming security and 

simultaneously shorting the overpriced security. In calculated anticipation, the spread will indeed 

converge. There is a potential downfall to strategy, the amount of time the pair takes to mean-

revert could become too costly to hold the positions for an extended period. 

 

IV. Methodology 

 

1. Data 

 

The primary data source for the ETF/ETN data is Commodity Systems, Inc., LLC (CSI). The 

sample covers the period from June 30, 2016 to September 30, 2017 inclusive for in-sample 

estimation. The days of October 1, 2017 up to and including December 15, 2017 were 

reserved for out-of-sample validation. These securities were filtered to meet the following 

liquidity requirements:     

- average daily trading volume greater than 200K shares  

- a minimum share price of $2 over the period  

These restrictions were placed to include only those ETF/ETNs that are likely to be excluded 

as “untradeable” by larger market participants due to insufficient liquidity. All prices are 

split/dividend adjusted. The resulting sample included 366 ETF/ETNs. 

To simulate achievable trading results transaction costs were estimated at 50 bps per single 

sided trade (1 percent round trip trade). These costs include: 

- $1.00 per trade (currently offered by interactive brokers) 

- SEC Section 31 transaction fee $0.0000218 per $1.00 

- Slippage @ $0.05 (difference between signal price and fill price 

 

2. Cointegration 

A total of 366 ETF/ETNs met the tradability requirements described above resulting in 

66,795 unique pairs. Each pair was then screened using the Augmented Dickey Fuller (ADF) 

Test2 for cointegration with an alpha value of 0.99% confidence. 

3. Model 

The Kalman Filter (KF) is a recursive algorithm used to estimate the value of dynamic, 

unobservable variables. In the context of pairs trading, the hedge-ratio and mean spread 

between two securities are the latent-state variables of interest. The hedge-ratio allows the 

investor to determine how much of each ETF to long or short once a threshold has been met. 

This threshold is 1 to 2± sd. The cointegrated pairs, determined by prescreening each pair 

with the ADF test, are then selected by running a nested loop3 to pair ETF’s. This method of 

                                                             
2 The Matlab 2016 cadf function contained in the econometrics toolbox was used to perform the ADF test. 
3 Code to create distinct pairs: 
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selection ensures all pairs are unique, there are no repeats and are cointegrated. 

The hedge ratio,  denoted  𝛃𝑡  , is time-varying, making traditional OLS an unsuitable model. 

The KF is conducive to dynamic estimation, defined by a set of equations which 

continuously update with each time step. The equations used concurrently are the 

measurement and state-transition equations (see part b below).  

a) Traditional Kalman Filter  

 

𝐳𝑡 = 𝐇𝑡𝐱𝑡 + 𝐯𝑡                  Measurement equation 

𝐱𝑡 = 𝐅𝑡𝐱𝑡−1 + 𝐁𝑡𝐮𝑡 + 𝐰𝑡                  State transition equation 

 

b) Pairs trading Kalman Specification (used in this study) 

 

𝐲𝑡 = 𝐱𝑡  𝛃𝑡  +  𝛜𝑡                 Measurement equation 

𝛃
𝑡

= 𝐈𝛃
𝑡−1

+  𝛚𝑡                 State transition equation 

 

Table 1. Traditional Symbols to Pairs Symbols Mapping 

Name Description Traditional Pairs Notation 

Observation 

(Measurement) 

Measure of true state 𝐳𝑡 𝐲𝑡 

True state  𝐱𝑡  𝛃
𝑡
 

Observation matrix Maps current state into 

observed space 
𝐇𝑡 𝐱𝑡  

Observation noise 𝐯𝑡 =  𝛜𝑡~𝑁(0, 𝐑𝑡) 𝐯𝑡  𝛜𝑡  

State-transition matrix Transition measurements 

applied to previous state 
𝐅𝑡  𝐈 

Previous estimate  𝐱𝑡−1 𝛃
𝑡−1

 

Control-input matrix Updates measurements in 

control vector 
𝐁𝑡 Intentionally left out 

Control vector Current control values 𝐮𝑡  Intentionally left out 

Process noise 𝐰𝑡 =  𝛚𝑡~𝑁(0, 𝐐𝑡) 𝐰𝑡   𝛚𝑡 
Note: In both systems 𝐑𝑡 and 𝐐𝑡 are the covariance matrices of the observation noise and process noise 

respectfully. 

 

                                                             
for(int i=1; i<N; i++) 
 { 
 for(int j= i+1; j<N; j++) 
                { 
                 Stock(i) = beta * stock(j); 
 } 
    } 
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    In this study, I removed the control variable matrix often found in applications where 

the state equation is permitted to change by some input (i.e. velocity or acceleration). I do not 

allow the state model to change4. The state transition matrix in this study is the identity matrix.      

𝛃
𝑡

= 𝐈𝛃
𝑡−1

+  𝛚𝑡 

To begin the Kalman filter process, I first needed to provide an initial estimate and initial value 

for the error in the estimate. The method is very sensitive to the initial values provided for 𝐐𝑡  

and 𝐑𝑡. I used a genetic algorithm5 adapting code provided in Kinlay (2015) to estimate these 

values. The first data input (measurement) is introduced into the system. From these values, three 

steps are performed iteratively with each new observation. (Van Biezen, 2015) They are as 

follows: 

Step 1. Calculating the Kalman Gain (KG). Both the error in the estimate (original for first 

iteration), and error in the measurement are used in computing the KG. Calculated as follows:  

KG = 
𝐸𝑟𝑟𝑜𝑟 𝑖𝑛 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒

𝐸𝑟𝑟𝑜𝑟 𝑖𝑛 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 + 𝐸𝑟𝑟𝑜𝑟 𝑖𝑛 𝑡ℎ𝑒 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡
 

 

The KG acts as a weight in determining which value, either the current measurement or previous 

estimate, to place more confidence in when entering the next step. 

Step 2.  The main step, updating the current estimate. Taking the previous estimate (First 

iteration this is the original estimate value) and summing this value with the weighted difference 

of the new measurement  and previous estimate.  

  𝐸𝑠𝑡𝑡 = 𝐸𝑠𝑡𝑡−1 + 𝐾𝐺[𝑀𝑒𝑎 − 𝐸𝑠𝑡𝑡−1] 

 

It is in this step the KG plays its leading role. From step one’s calculation if the errors in 

the estimates are large this means there is a lot of uncertainty in the previous estimate and the 

KG will be large. Clearly, the researcher wants this value containing inaccuracies to have a 

smaller impact going into the fresh estimate. In this scenario, more weight is placed on the 

observation as its errors are relatively small.  The KG when multiplied by the difference between 

measurement and previous estimate, will retain a larger portion of the measured value when 

feeding into the current estimate. Alternatively, if the KG is small, this means the errors in the 

measurement were very large and less importance will be placed on the measured value to 

minimally impact the current estimate’s calculation. 

 

                                                             
4 Further research may explore the use of the control component to handle such things as earnings      
announcements and other news items that have a transitory effect. 
5
  Source: http://jonathankinlay.com/2015/02/etf-pairs-trading-kalman-filter/ 

  

   kfBetaLik = @(QR)kfBetaLikelihood(X(:,1),X(:,2), QR); 
   options = gaoptimset('Generations', 1000, 'TolFun', 1E-10); 
   [QR, Lik] = ga(kfBetaLik, 2,[],[],[],[],[0 0], [0.1 0.1],[],options); 

 

http://jonathankinlay.com/2015/02/etf-pairs-trading-kalman-filter/
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Step 3.  Calculate the new error in the estimate. The error in the estimate is updated by 

multiplying the previous error in the estimate by the difference between one and the KG.  

 

𝐸𝑒𝑠𝑡𝑡
=

(𝐸𝑚𝑒𝑎)(𝐸𝑒𝑠𝑡𝑡−1
)

(𝐸𝑚𝑒𝑎) + (𝐸𝑒𝑠𝑡𝑡−1
)
 

 

𝐸𝑒𝑠𝑡𝑡
= [1 − 𝐾𝐺](𝐸𝑒𝑠𝑡𝑡−1

) 

 

This means if the previous error in the estimate was greater than the error in the data, the KG will 

be large. Subtracting from one will yield a small number. When multiplied by the previous error 

in the estimate quickly reduces the error in the estimate for the next iteration. If the KG was 

small it would indicate the errors in the measurement are large. Now we do not want the new 

estimates to be heavily influenced by the incoming observations. The error in the estimate 

therefore decreases at a slower rate. 

 

 

 

V. Results 

Table 2 shows the combined results of the 12 best pairs for the period from June 30, 2016 to 

December 12, 2017. The best pairs were selected based upon results estimated from June 30, 

2016 to September 30, 2017 (in sample results).  The out of sample results cover the period from 

Oct 2, 2017 to December 12, 2017. 

 

ETF A ETF B APR Sharpe Cum. Return Max. DD 
Max. 
DDD 

Q/R 

DJP DRIP 0.25 1.20 0.39 -0.09 137 0.05 

DJP ERY 0.20 1.40 0.31 -0.06 207 0.04 

DJP GUSH 0.33 1.53 0.51 -0.11 64 0.01 

EMLC GUSH 0.26 1.23 0.40 -0.14 115 0.01 

EMLC SOXL 0.11 0.89 0.16 -0.09 147 0.00 

EMLC SOXS 0.18 1.17 0.27 -0.11 110 0.00 

FNDF SOXL 0.17 1.23 0.25 -0.07 109 0.00 

GUSH PGF 0.33 1.26 0.52 -0.13 224 0.09 

JDST XRT 0.47 1.11 0.74 -0.38 105 0.43 

JNUG TVIX 0.41 0.98 0.64 -0.33 168 0.04 

JNUG UVXY 0.53 1.15 0.85 -0.32 168 0.01 

KIE SOXS 0.14 1.07 0.22 -0.13 115 0.01 

  Table 2.  
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Figure 2. In-sample and out-of-sample results. 

 

 

VI. Conclusions 

Although the Kalman filter process produced excellent in sample results, the out-of-sample 

results proved disappointing and untradeable as depicted in Figure 2. The results may be 

because pairs trading strategies have gained widespread acceptance thus making profitability 

much more elusive. 

That said, future investigations may explore using intraday data, such as 1 or 5 minute bars to 

see if profitable, tradeable strategies can be discovered.  
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